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A silver(I)/ThioClickFerrophos complex catalyzed the endo selective asymmetric 1,3-dipolar cycloaddition
reaction of methyl N-benzylideneglycinate (the source of azomethine ylides) with a,b-unsaturated esters
and maleimides to give the endo-2,4,5- and 2,3,4,5-substituted pyrrolidines in good yields with high
enantioselectivities (up to 99% ee). The complex also effectively catalyzed the endo selective reactions
with b-nitrostyrene to give the 4-nitropyrrolidine in a high enantioselectivity.

� 2010 Elsevier Ltd. All rights reserved.
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1,3-Dipolar cycloaddition of azomethine ylide to electron-defi-
cient olefins yields chiral pyrrolidines, an important class of het-
erocyclic compounds with widespread applications to the
synthesis of biologically active compounds and natural products.1

These cycloaddition reactions represent an important class of syn-
thetic methods and have inspired much research interest in the
development of asymmetric catalytic variants. Elegant studies in
this field have often centered on chiral metal complex-catalyzed
asymmetric 1,3-dipolar additions with azomethine ylides, and
CuI and AgI/phosphine complexes often give moderate to excellent
levels of stereoselectivity with methyl N-benzylideneglycinate (the
source of azomethine ylides). Wang’s CuI or AgI/TF-BiphamPhos,2

Carretero’s CuI/Fesulphos,3 Zhang’s AgI/xylyl-FAP,4 Schreber’s AgI/
QUINAP,5 Zhou’s AgI/FPOX,6 and Sansano’s AgI/BINAP7 are the rep-
resentative effective chiral metal catalysts for the reaction. They
give either endo- or exo-diastereomer of proline derivatives with
good enantioselections (Fig. 1).

Recently, we reported a novel ClickFerrophos ligands (L4),
whose CuI complexes exhibited highly exo stereoselectivity and
excellent enantioselectivity in the asymmetric 1,3-dipolar cycload-
dition of azomethine ylides with a vinyl sulfone.8 We also suc-
ceeded in highly endo and enantioselective reaction with (E)-
acyclic and cyclic a-enones by using AgI/ThioClickFerrophos com-
plexes (L1–L3).9 Extending the interest in the AgI/L1–L3-catalyzed
cycloaddition reaction with other dipolarophiles (alkenes), we
have found that it also worked effectively for a,b-unsaturated es-
ters, amides, and b-nitrostyrene in high enantioselections.10

We initially focused on optimization of the enantioselective 1,3-
dipolar cycloaddition. Methyl N-(4-chlorobenzylidene)glycinate 1b
and methyl acrylate 2a were chosen as a dipolar (azomethine
ylide) and a dipolarophile, respectively. The model reaction was
carried out in toluene at room temperature for 12 h by using vari-
ll rights reserved.

zawa).
ous AgI salts (5 mol %), ligands (L1–L3) (5 mol %), and Et3N
(18 mol %).11 The endo to exo isomer ratio and enantiomeric excess
(ee) of the product were determined by 1H NMR and HPLC (Chir-
alpak AS-H), respectively. The reaction proceeded smoothly to give
a mixture of endo/exo cycloadducts. The results are summarized in
Table 1. Notably, the endo product was produced preferentially in
contrast to the previous CuI/L4 complex (entry 9).8 From the opti-
mization experiments, the combination of AgOAc and L3 (R = t-Bu)
was revealed to be the most effective catalyst for the reaction. Fur-
ther, the ee could be improved up to 98% ee by carrying out the
reaction in CH2Cl2 at 0 �C although the yield was decreased to some
extent. Then, we concluded the optimal catalyst, solvents, and the
reaction conditions are AgOAc/L3 and CH2Cl2, 0 �C for 24 h, respec-
tively to obtain the endo-adduct in good diastereo- and enantiose-
lectivities. The combination of CuI salts with L3 resulted in a lower
enantioselectivity of endo-adduct (entry 10).

Next we examined the scope of the reaction with respect to azo-
methine ylide precursors (dipolars) 1 using 2a as an alkene (dipol-
arophile) under the optimized conditions. The results are
summarized in Table 2. High endo-selectivity (endo/exo = 98/2–
99/1) and high ee of endo-adducts (3a–h) were obtained virtually
independent of stereo and electronic properties of substituents;
electron-withdrawing (Cl, Br, CN), -donating (Me, OMe), and a po-
sition of methyl group (entries 4–6) almost did not affect on the
L-2: R = Cy
L-3: R = t-Bu

Figure 1. ClickFerrophos and ThioClickFerrophos.
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Table 3
The scope of the reaction with respect to dipolarophilesa

Entry Alkene Product Yieldb (%), endo/exoc ee (%) (endo)d

1 2b 9 82, 98/2 96
2 4 10 79, 98/2 94
3 5 11 85, 94/6 91
4 6 12 86, 85/15 95
5 7a 13a 91, 98/2 99
6 7b 13b 93, 98/2 86
7 8 14 36, 65/35 91

a 1b (0.2 mmol), dipolarophile (0.3 mmol), AgOAc (0.01 mmol), L3 (0.011 mmol),
CH2Cl2 (2.0 mL): 0 �C, 24 h.

b Total isolated yield of endo-adduct.
c Determined by 1H NMR.
d Determined by HPLC.

MeO2C CO2Me

CO2Me

MeO2C

5

CO2R

2a: R = Me
2b: R = t-Bu

R
NO O

7a: R = Me
7b: R = Ph

CO2Me

Me

4

6

N
H

p-ClPh CO2Me

MeO2C CO2Me

12

N
H

p-ClPh CO2Me

MeO2C CO2Me

11

N
H

p-ClPh CO2Me

13a: R = Me
13b: R = Ph

R
N OO

N
H

p-ClPh CO2Me

ButO2C

9

N
H

p-ClPh CO2Me

MeO2C Me

10

N
H

p-ClPh CO2Me

O2N Ph

14

NO2

Ph

8

Ar = 4-ClC6H4

Figure 2. Dipolarophiles and products.

Table 1
Optimization experiments of 1,3-dipolar reaction of azomethine ylide with methyl
acrylate 2aa

4-ClC6H4 N CO2Me
N
H

4-ClC6H4 CO2Me

MeO2C

endo (major)

CO2Me

solvent, Et3N
Ag(I)/Ligand

1b

2a

3b
Entry Ag(I) salt Ligand Yieldb (%) endo/exoc eec (%) (endo)

1 AgOAc L1 93, 98/2 63
2 AgOTf L1 87, 98/2 45
3 AgPF6 L1 90, 98/2 49
4 AgSbF6 L1 91, 98/2 45
5 AgOCOCF3 L1 88, 98/2 37
6 AgOAc L2 74, 98/2 88
7 AgOAc L3 86, 98/2 96
8d AgOAc L3 78, 98/2 98
9e AgOAc L4 89, 30/70 96
10 CuOAc L1 71, 91/9 35

a Methyl N-(p-chlorobenzylidene)glycinate (0.2 mmol), methyl acrylate
(0.3 mmol), Ag(I) salts (0.01 mmol), Et3N (0.036 mmol), ligand (0.011 mmol), tolu-
ene (2.0 mL); rt, 12 h.

b Isolated yield (endo).
c Determined by HPLC (Chiralpak AS-H).
d The reaction was carried out at 0 �C in CH2Cl2.
e Ref. 8, ee % is for exo adduct.

Table 2
The scope of the reactions with respect to dipolesa

N
H

Ar CO2Me

MeO2CCO2Me

Ar N CO2Me

CH2Cl2, Et3N
AgOAc/L3

endo (major)
1

2a

3
Entry Dipole Ar Product and yieldb (%) eec (%)

1 1a Ph 3a, 71 97
2 1b 4-ClC6H4 3b, 78 98
3 1c 4-BrC6H4 3c, 91 98
4 1d 2-MeC6H4 3d, 81 95
5 1e 3-MeC6H4 3e, 84 98
6 1f 4-MeC6H4 3f, 78 98
7 1g 4-MeOC6H4 3g, 91 98
8 1h 4-CNC6H4 3h, 57d 97
9 1i 2-C8H9 3i, 74 98

a Dipole (0.2 mmol), methyl acrylate (0.3 mmol), AgOAc (0.01 mmol), L3
(0.011 mmol), CH2Cl2 (2.0 mL): 0 �C, 15–24 h.

b Isolated yield of endo product.
c ee of endo isomer (endo/exo = 98/2–99/1) was determined by HPLC.
d endo/exo = 95/5.
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enantioselectivity, although yield was low in the reaction with 1h
(Ar = 4-CNC6H4). The reaction with 2-naphthyl derivative 1i also
gave the high ee values as phenyl derivatives (entry 9).

Finally, we examined the scope of the reaction with respect to
alkenes (dipolarophiles) using 1b as an azomethine source. The re-
sults are outlined in Table 3. In the reaction with tert-butyl acrylate
2b, endo and enantioselectivities were almost the same as the reac-
tion with methyl acrylate (entry 1). In the reaction with methyl
methacrylate 4, endo-adduct 10 was produced regioselectively
with 94% ee (entry 2). It must be noteworthy that high enantiose-
lectivity was achieved by using AgI/L3 complex, while Oh and co-
workers reported that AgI/brucine-derivative complex affords the
adduct in 60% ee.12 In the reactions with dimethyl maleate 5 and
fumarate 6 the corresponding endo isomers 11 and 12 were ob-
tained, respectively (endo:exo = 98:2) with a high enantioselectivi-
ty (95% ee, entries 3–4). The reaction with N-methyl-maleimide
7a gave the endo-adduct 13a with high diastereoselectivity
(endo:exo = 98:2) and 99% ee (entry 5). Enantioselectivity was de-
creased by displacing N-methyl group by N-phenyl group 7b, ee
value being 86% (entry 6). The reaction with b-nitrostyrene gave
a low yield of the cycloadduct 14 as a mixture of diastereomers
(endo/exo = 65/35), yield and ee of endo isomer being 36% and
91% ee, respectively (entry 7).

In conclusion AgI/L3 complex-catalyzed asymmetric 1,3-dipo-
lar cycloaddition of azomethine ylide could be extended to a,b-
unsaturated esters, amides, and b-nitrostyrene in addition to
previous a-enones. The reaction proceeded to give the endo
cycloadduct predominantly with excellent enantioselectivities
(Fig. 2).
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